REGULAR DILATIONS OF REPRESENTATIONS OF PRODUCT SYSTEMS

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isometric Dilations of Representations of Product Systems via Commutants

We construct a weak dilation of a not necessarily unital CP-semigroup to an E–semigroup acting on the adjointable operators of a Hilbert module with a unit vector. We construct the dilation in such a way that the dilating E–semigroup has a pre-assigned product system. Then, making use of the commutant of von Neumann correspondences, we apply the dilation theorem to proof that covariant represen...

متن کامل

Distinguished positive regular representations

Let $G$ be a tamely ramified reductive $p$-adic‎ ‎group‎. ‎We study distinction of a class of irreducible admissible representations‎ ‎of $G$ by the group of fixed points $H$ of an involution‎ ‎of $G$‎. ‎The representations correspond to $G$-conjugacy classes of‎ ‎pairs $(T,phi)$‎, ‎where $T$ is a‎ ‎tamely ramified maximal torus of $G$ and $phi$ is a quasicharacter‎ ‎of $T$ whose restriction t...

متن کامل

compactifications and representations of transformation semigroups

this thesis deals essentially (but not from all aspects) with the extension of the notion of semigroup compactification and the construction of a general theory of semitopological nonaffine (affine) transformation semigroup compactifications. it determines those compactification which are universal with respect to some algebric or topological properties. as an application of the theory, it is i...

15 صفحه اول

Inverse systems and regular representations

LetG be a finite group acting on a finite-dimensional vector space V , such that the ring of invariants is polynomial. The purpose of this note is to describe exactly the finitely generated inverse systems such that the associated G-representation is the direct sum of copies of the regular representation of G. This generalizes work of Steinberg, Bergeron, Garsia, and Tesler. Related results are...

متن کامل

Representing a product system representation as a contractive semigroup and applications to regular isometric dilations

In this paper we propose a new technical tool for analyzing representations of Hilbert C∗-product systems. Using this tool, we give a new proof that every doubly commuting representation over N has a regular isometric dilation, and we also prove sufficient conditions for the existence of a regular isometric dilation of representations over more general subsemigroups of Rk+.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Proceedings of the Royal Irish Academy

سال: 2008

ISSN: 1393-7197,2009-0021

DOI: 10.3318/pria.2008.108.1.89